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A B S T R A C T   

A mathematical model of surface erosion in a course of a trench formation by translationally moving ion beam of 
a Gaussian shape is considered. The solutions obtained in self-similar variables describe the states of equilibrium 
of the boundary value problem and their dependence on the sputtering parameters. It is shown that there are 
three parameter areas in which only smooth, smooth and discontinuous and only discontinuous solutions exist. 
The plots of the surface profiles corresponding to three possible types of solutions are given. Formulas for 
calculating the profile of etching trenches and examples of calculating profiles corresponding to smooth and 
discontinuous solutions are given.   

1. Introduction 

In the course of solid’s surface bombardment by high energy ions the 
removal of the external atomic layers of the target occurs. This phe
nomenon, known as surface erosion, is widely used as a standard tech
nique in the secondary ion mass spectrometry for depth profiling, and in 
micro- and nanotechnologies. As the rate of an infinitesimal surface area 
sputtering depends on the local angle of bombardment, erosion may 
considerably modify initial surface microtopography. 

A review of the first works on the relief formation on the surface of 
solids under the ion bombardment can be found in the book by R. 
Behrish [1]. Theoretical approaches to this phenomenon based on the 
angular dependence of the sputtering yield were formulated in the re
view by G. Carter [2]. More recent interest in the study of surface relief 
formation was due to the possibility of creating ripples and ordered 
wave-like structures of micron and nanometer scale on the surface of a 
number of materials. A fairly detailed review of the experimental results 
and mechanisms of ripple formation is presented in Ref. [3]. 

To date, several models have been developed for surface structuring 
during its ion sputtering. In the work by Carter and Vishnyakov [4], the 
possibility of directed redistribution of the mass by recoil atoms in a 
collision cascades and of the angular dependence of the sputtering yield 
were considered. Bradley and Harper evolving Sigmund’s theory of 
sputtering [5] proposed a linear model of ripple formation [6] based on 
the angular dependence of erosion and on the concept of surface diffu
sion. Simulation of the parameters of periodic structures by the Monte 
Carlo method, based on the models [4,6] under various conditions of ion 

bombardment, reveals good agreement with the experimental results [7, 
8]. Nonlinear models for the formation of periodic structures were 
proposed in Refs. [9–11]. In works [12,13] the hydrodynamic approach 
to ripples formation in the surface layer amorphized by ion bombard
ment was developed. The paper [14] presents a nonlocal erosion model 
based on P. Sigmund theory, but taking into considering the spatial 
nonlocality of the sputtering implying that the points of the primary ion 
impact and the secondary ion emission are spatially shifted. It should be 
noted that practically in all these works, both experimental and theo
retical, the ion fluence at the sample surface was assumed to be 
homogeneous. 

In the early 2000s, was developed a method for the formation of a 
regular wavy nanorelief [15] by a moving ion beam. To form an array of 
ordered waves a ribbon ion beam moving translationally at a constant 
rate was used. When moving the beam forms a trench with a slope in its 
front part (Fig. 1) where the local angle of bombardment Θ − Θ0 may fall 
in the region of a wavy nanorelief existence. In this event an array of a 
coherent nanometer waves is formed at the bottom of the trench. The 
essence of the method is that due to the dependence of the wavelength 
on the angle of bombardment Θ0, the condition of the relief formation is 
fulfilled only for waves of a certain length, which ensure their high 
coherence. It was supposed that by changing the speed of the ion beam, 
the fluence, or the angle of bombardment, it would be possible to obtain 
slopes of various steepness, thereby adjusting the wavelength. The 
analysis of the erosion equation, considered in its most general form [2, 
16], shows that this is far from the case. 

It seems obvious that a slowly moving beam of a given intensity and 
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angle of incidence should form a trench of a strictly definite depth. 
However, and this will be shown below, in a certain range of ion beam 
parameters there is no unambiguous relationship between sputtering 
parameters and the trench depth. At a certain value of the beam velocity, 
fluence or bombardment angle, the monotonous trench depth depen
dence on these parameters undergoes a break, so some depth values, as 
well as local angles of bombardment will simply be unattainable. The 
reasons for such peculiarities of a surface sputtering by moving ion beam 
become clear when analysing the mathematical model below.  

1. Equation of surface erosion by moving ion beam and its solution 

To describe the process of surface erosion by an ion beam, many 
models have been proposed, the main of which were mentioned above. 
As a rule, all of them are the results of consideration more subtle effects 
of sputtering within the framework of the basic model 

∂ z
∂ t

= −
1
ρ JV(Θ) (1) 

presented in Refs. [2,16] and a number of other works. Here deriv
ative in the left-hand side of equation stands for the local rate of surface 
height z(x, t) reduction. This rate is determined by the fluence J of 
incident ions, averaged both over the time and the space variables, 
atomic density of target ρ and some function 

V(Θ)=Y(Θ0 − Θ)
cos(Θ0 − Θ)

cos Θ
(2)  

where Y(Θ0 − Θ) is sputtering yield, Θ0 is the angle between z-axis and 
bombardment direction, Θ is the angle between z-axis and local normal 
to a surface element. In the case of surface sputtering by stationary ion 
beam its fluence is a single valued and limited function of coordinate 
which meets the boundary condition 

J(x)→ 0, x→ ± ∞ (3) 

At surface sputtering by moving beam fluence J is a time-dependent 
function J(x − vt), where v is a beam velocity. Consider the case when 
the density of the ion beam is described by the Gaussian function, which 
in a fixed coordinate system has the form 

J(x − vt)= J0 exp
[

−
(x − vt)2

δ2

]

(4) 

By differentiating Eq. (1) on x and changing in left-hand side the 
order of differentiation it easy to get the following nonlinear hyperbolic 
equation 

∂
∂ t

(tan Θ)= − cos 2 Θ
∂

∂ x

[
J(x − vt)

ρ V(Θ)

]

(5)  

which must be considered together with the supplemental condition 

∂ z
∂ x

= tan Θ (6) 

Further, two variants of studying the system of equations (5) and (6) 
are possible: the statement of the Cauchy problem and its analysis, or the 
statement and analysis of the boundary value problem. If system (5), (6) 
is supplemented with initial conditions Θ(x, t0) = Θ0(x), z(x, t0) = z0(x)
then it can be solved by a standard method referred to as the method of 
characteristics, a description of which can be found in Refs. [2,16,17]. 
As shown by E. Hopf [18], solutions of this problem can be discontin
uous functions (ambiguous solutions), which in physics are referred to as 
shock waves. In present case, we offer an alternative approach in which 
our solution is recast as a traveling wave problem for which the 
boundary conditions 

Θ → 0, ξ→ ± ∞ (7) 

are essential. Therefore, it is precisely the boundary value problem 
(5) - (7) that is considered below, for which solutions in the form of 
traveling waves are sought. 

It is natural to seek a solution to the boundary value problem (5) - (7) 
in the class of self-similar solutions, for which it is necessary to perform 
Galilean transformation ξ = (x − vt)/δ, reducing Eq. (5) to 

∂
∂ ξ

[
1
vρ J(ξ)V(Θ) − tan Θ

]

= 0 (8)  

where J(ξ) = J0 exp( − ξ2). Obviously, the expression in parentheses is a 
constant 

J0

vρ exp
(
− ξ2)V(Θ) − tan Θ=C (9)  

and by virtue of condition (7) C = 0. After obvious reductions, taking 
into consideration Eq. (2), Eq. (9) acquires the form 

ξ= ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln
[

J0

vρ
Y(Θ0 − Θ)cos(Θ0 − Θ)

sin Θ

]√

(10) 

The latter can be resolved numerically as ξ(Θ) and inverted to obtain 
sought-for solution Θ(ξ), providing the sputtering yield Y(Θ) is a known 
function. 

Sputtering yield angular dependence Y(Θ), strongly varying for a 
different target materials and ion beam parameters, in all further ex
amples is calculated for the case of silicon sputtered by 9 keV nitrogen 
N+

2 ions. Experimentally obtained dependence Y(Θ) [19] was approxi
mated by Yamamura function [20]. 

Y(Θ)=Y(0)
exp(α − α/cos Θ)

cos βΘ
(11)  

where α and β are parameters of Eq. (11) that provide the best fit for 
experimental points 

α=
ln[Ymax/Y(0)]cos Θmax

cos Θmax − ln(cos Θmax) − 1
⋅ β=

α
cos Θmax

(12)  

and where Θmax matches up sputtering yield maximum. 
Considering Eqs. (11) and (12), Eq. (10) can be reduced to 

Fig. 1. Side-view of flat surface sputtered by a moving ribbon ion beam.  
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ξ= ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln
(

A
exp[ − α/cos(Θ0 − Θ)]

sin Θcosβ− 1(Θ0 − Θ)

)√

(13)  

where the sputtering parameters are combined into a dimensionless 
complex A = J0Y(0)exp α/vρ. Such complexes, analogous to similarity 
numbers and determining the behavior of a dynamical system, are 
usually called control or bifurcation parameters. The latter term is used 
in cases when bifurcation of new solutions takes place when the control 
parameter exceeds a certain critical value. 

The numerical solution of Eqs. (13) and (6) in a certain range of the 
parameter A values leads to an ambiguous dependence Θ(ξ), which 
means that the corresponding solution z(ξ) is a piecewise continuous 
function. Thus, the problem arises of determining the range of param
eter A values in which discontinuous solutions take place [21] and the 
choice of stable solutions. A rigorous analytical solution to this problem 

is given in the Appendix. Below are the results of the numerical solution 
of Eq. (13), which are interpreted in light of a more rigorous analysis of 
Eq. (5) provided in Appendix. 

2. Examples of discontinuous surfaces 

By tabulating Eq. (13), one can obtain an array ξi(Θi) for any desired 
value of the control parameter A and convert it to Θi(xi). Using the 
sequence Θi(xi) and Eq. (6) it is easy to reconstruct the surface profile 

z(x)=
∫x

− ∞

tan Θ(x)dx (14) 

by numerical integration. The resulting dependencies Θ(x) and z(x)
may be both unambiguous and smooth or ambiguous and discontinuous, 

Fig. 2. Plots Θ(x) and z(x) at the first critical value of the control parameter 
A1 = 0.67666. In the parameter range 0 < A < A1, the function Θ(x) is un
ambiguous, and z(x) is smooth. 

Fig. 3. Plots Θ(x) and z(x) in the supercritical region A = 0.67690 > A1. The 
arrows show the region where the function Θ(x) is ambiguous and the corre
sponding discontinuity on the curve z(x). 
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so for their interpretation, the results of the analysis given in the Ap
pendix will be required. Figs. 2–4 show the profiles Θ(x) and z(x) plotted 
in a moving frame for the control parameter values A = A1 = 0.67666, 
A = 0.67690, A = A2 = 1.17315, and the angle of bombardment Θ0 =

0∘. Fig. 5 provides an example of trench profile for nonzero angle of 
beam incidence Θ0 = 10∘ at A = 0.9. 

Fig. 2 shows the plots of Eqs. (13) and (14) corresponding to the 
solution of an auxiliary equation us(η), u ∈ F0P0, η ∈ (0,1) at A = A1 
considered in Appendix (Eq. (A14)). In this case, the functions Θ(x) and 
z(x) are smooth and unambiguous. However, when the critical param
eter is slightly exceeded ε = (A − A1)/A1 = 0.00035, on the plot of the 
function Θ(x) in the vicinity of the point M(0,69.4∘) a small domain of 
Eq. (13) solution appears and the solution z(x) becomes a piecewise 
continuous function (Fig. 3). Fig. 4 shows the plots of functions Θ(x) and 
z(x) for A = A2, when smooth solutions us(η) of an auxiliary equation 

disappear and only piecewise continuous solutions ud(η), considered in 
the Appendix, remain. It is essential that the trench in the case of 
discontinuous solutions is an order of magnitude deeper than in the case 
of smooth solutions. 

If the angle of bombardment is nonzero, the critical values of 
parameter A also undergo a corresponding alteration. Fig. 5 shows the 
plots Θ(x) and z(x) for the bombardment angle Θ0 = 10∘. It is obvious 
that in this case A ∈ [A′

1, A
′

2], where A′

1 and A′

2 are some new critical 
values of the control parameter. However, the general scheme of system 
evolution at control parameter variation, considered in the Appendix, 
remains the same as for Θ0 = 0∘. 

3. Summary 

In the course of analysis of the problem on surface sputtering by 

Fig. 4. Plots Θ(x) and z(x) at the second critical value of the control parameter 
A2 = 1.17315. 

Fig. 5. Plots Θ(x) and discontinuous solution z(x) at Θ0 = 10∘ and A = 0.9. 
Arrows show the paths of Eq. (15) integration corresponding smooth 1 and 
discontinuous 2 solutions z(x). 
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moving ion beam, both smooth and discontinuous solutions of “traveling 
wave” and “shock wave” types, have been obtained. This result reflects a 
fundamental property of the systems modeled by equations (5)–(7), 
referred to as bistability. This property does not depend on the method 
for solving the problem, and in the case of the Cauchy problem solved by 
the characteristics method, along with smooth solutions, solutions that 
are ambiguous in terms of Θ(x, t) and discontinuous in terms z(x, t) most 
likely will be obtained. A similar situation arises when analyzing the 
well-known Hopf equation 

∂u
∂t

+ u
∂u
∂x

= 0 (15)  

which is characterized by discontinuous solutions [18]. Equation (5) 
belongs to the same class as the Hopf equation, with the difference that 
equation (5) is much more complicated. 

The most important for practical application result is the revealed 
relationship of wave’s amplitude and control parameter value. Accord
ing this result trench’s profile and depth may be controlled by A 
parameter adjustment, but only within a certain limit. With parameter A 
variation and compliance with the condition A < A1 the trench depth 

h=
∫∞

− ∞

tgΘ(x)dx (16)  

varies monotonically. Within domain [A1,A2] there are two feasible 
solutions z(x): smooth 1 and discontinuous 2 (Fig. 5). The results of the 
analysis given in the Appendix do not answer the question which of the 
two solutions will be stable, i.e. which of the two sputtering regimes will 
occur in the technological process. If one of the solutions is unstable, 
then during the trench formation, a spontaneous change in the sput
tering regime can occur despite the fixed parameters of the ion beam. 
For example, the transition from a high sputtering rate at large angles Θ 
(Fig. 5, curve 2) when a deep trench is formed, to a low sputtering speed 
with a small angle profile z(x) and shallow trench is possible. And 
finally, at A > A2, only one discontinuous solution remains, to which in 
practice correspond deep trenches. 

This study was performed in accordance with a State assignment of 
the Ministry of Education and Science of the Russian Federation to 
Valiev Institute of Physics and Technology, Yaroslavl Branch, Russian 
Academy of Sciences # 75-00669-21-00 of 23.12.2020. 

Declaration of competing interest 
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Appendix 

A1. Analysis of erosion equation solutions 

Let us rewrite Eq. (5) in self-similar variables and introduce new notation tan Θ = u. Further consideration will be carried out for normal 
bombardment, when Θ0 = 0 and assumption that condition Θ ∈ ( − π /2, π /2) always holds. In this case relation Θ = arctan(u) is always valid and Eq. 
(15) subject to relation cos Θ = 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√
and boundary condition (9) may be written in a new designation as 

A exp
(
− ξ2)exp

(
− α

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√ )(
1 + u2)

β
2 − u= 0 (A1) 

Function u(τ, ξ) in Eq. (A1) may be considered as a product of two functions 

u=Aη(ξ)G(u) (A2)  

where 

η
(
ξ
)
= exp

(
− ξ2)∈ (0; 1] (A3)  

and 

G(u)= exp
(
− α

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√ )(
1 + u2)

β
2 (A4) 

Function G(u) is a bounded one as according equation 

G′

u(u) ≡ G(u)
u

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√

(
β

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√ − α
)

(A5) 

it has maximum at 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√
= β/α. From here follows inequality 

0<G(u)≤M = exp(− β)
(

β
α

)β

(A6)  

which by virtue of Eq. (A2) yields condition 

0 < u(η) < AMη (A7) 
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implying that with all admissible η, thus with all ξ, function (A4) is a bounded one. 
To apply implicit function theorem let us reduce Eq. (A2) to 

η= 1
A

u
G(u)

(A8)  

and find its derivative over u 

∂η
∂ u

=
1
A

G(u) − uG′

u(u)
G2(u)

(A9) 

Subject to Eq. (A4), which can be rewritten as G′

u(u) = G(u)ϕ(u), Eq. (A9) reduces to 

∂η
∂ u

=
1
A

1 − uϕ(u)
G(u)

(A10)  

where 

ϕ(u)= u
β − α

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√

1 + u2 (A11) 

According implicit function theorem, in the points where Eq. (A10) r.h.s. is nonzero, in sufficiently small vicinity of any solution (η0, u0) of Eq. (A8) 
there exists sufficiently smooth solution u = u(η) of this equation. For instance, in a vicinity of formal solution (0,0) exists the single state of equi
librium of boundary value problem (8), (9) (i.e. single running wave). In the point where ∂ η/∂ u = 0 implicit function theorem is inapplicable, what 
admits an ambiguous solution of Eq. (A8). 

To reveal these points let us set Eq. (A10) equal to zero 

1 − uϕ(u) = 0 (A12)  

thereby it reduces to equation free from parameter A, which roots does not already depend on control parameter. Substitution of Eq. (A11) and new 
designation 1+ y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + u2

√
, signifying that y ≥ 0, in Eq. (A12) yields cubic equation 

αy3 +(1 − β+ 3α)y2 + 2(1+α − β)y+ 1= 0 (A13) 

Analysis reveals that Eq. (A13) has two positive roots y1, y2 relating to Eq. (A12) roots as u1 = 2.691545 and u2 = 0.701918. 
Points u1 and u2 correspond to function’s u/G(u) maximum u2/G(u2) = 1.17315 and minimum u1/G(u1) = 0.67666 respectively. Whereas η ≤ 1, A 

values A1 = 0.67666 and A2 = 1.17315, matching up conditions η(u1) = 1 and η(u2) = 1 (see Eq. (A8)), may be considered as control parameter 
critical values, determining the main three situations.  

I. With A < A1 Eq. (A8) has single solution, shown in Fig. A1  
II. Within the interval A1 < A < A2 Eq. (A8) solution is already ambiguous. For each η0 ∈ (0, η1) equation (Fig. A2) has single solution, at η0 ∈ (η1, 1) it 

has three solutions, and at η0 = η1 it has two solutions. I.e. Eq. (A8) has continuum solutions, including those that have finite number of 
discontinuity points. 

Fig. A1. Plot of function u(η) in precritical domain A < A1. Eq. (A8) has single solution corresponding to lower branch of the curve. 
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Here are five examples of possible solutions: 
four discontinuous solutions 

1
)

u= u
(

η
)

=

{
u, u ∈ F0F1, η ∈ (0, η1)

u, u ∈ F3F4, η ∈ [η1, 1]
(A14)  

2
)

u= u
(

η
)

=

{
u, u ∈ F0F1, η ∈ (0, η1)

u, u ∈ F3P4, η ∈ [η1, 1]
(A15)  

3
)

u= u
(

η
)

=

{
u, u ∈ F0P1, η ∈ (0, η*)

u, u ∈ P3F4, η ∈ (η*, 1]
(A16)  

4
)

u= u
(

η
)

=

{
u, u ∈ F0P1, η ∈ (0, η*)

u, u ∈ P2P4, η ∈ (η*, 1]
(A17)  

and one smooth solution 

5) u= u(η), u∈F0P0, η∈ (0, 1) (A18)  

Fig. A2. Plot of function u(η) within critical values A1 < A < A2. Eq. (A8) has continuum of discontinuous and one smooth solution.  

In Eqs. (A14) – (A18) the expression in the r.h.s. (u(η) = u, u ∈ F0, F1 for instance) signifies that solution belongs to F0, F1 brunch in Fig. A2. As 
further both variants 1) and 5) will play the particular role, let us denote solutions 1) as ud(η) and solution 5) as us(η).  

III. When A > A2 (Fig. A3), as well as in previous case, solution of Eq. (A8) is ambiguous but in contrast with II the smooth solution disappears. 
From the infinite set of solutions for further consideration will be chosen only one 

u= u(η)=
{

u, u ∈ F0F1, η ∈ (0, η1)

u, u ∈ F3F4, η ∈ [η1, 1] (A19) 
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Fig. A3. Plot of function u(η) in supercritical domain A > A2. Eq. (A8) has continuum of discontinuous solutions.  

It is noteworthy that all solutions of Eq. (A8) belong to the class of generalized solutions of Eq. (8) [21–23], i.e. to the class of functions meeting the 
following conditions:  

• In any bounded half-plane τ ≥ 0 a number of lines and points of discontinuity of a function u(τ, ξ) is finite. Outside these lines and points function 
u(τ, ξ) is continuously differentiable over each variable.  

• At lines of discontinuity one-sided derivatives of u(τ, ξ) exist. 

Existence of above defined solutions was proved in the works by O.A. Oleinik [21–23]. 

A2. Stability of solutions obtained 
As is well known, physically feasible are only generalized solutions that are resistant to small perturbations. As applied to the problem in question 

this means that stable discontinuous solutions should satisfies inequality 

f ′

u[ξ+, u(ξ+)]≤ 0 ≤ f
′

u[ξ− , u(ξ− )] (A20)  

where ξ+ = ξ* + 0, ξ− = ξ* − 0, and ξ* is discontinuity point. This stability criterion is applicable only provided that 

f ′′uu ∕= 0 (A21) 

It is easy to verify that in present instance this condition always holds. According dependence f ′′uu(u)/Aη second derivative makes vanish in points 
u3 = 1.8978 and u4 = 5.6248, i.e. far from extremum points u1, u2. 

It is also significant that derivate 

f ′

u =AηG(u)ϕ(u) − 1 (A22) 

vanishes when uϕ(u) = u/AηG(u) ≡ 1, hence 

sign f
′

u = − sign
( u

G(u)

)′

u
(A23) 

This implies that among solutions of Eq. (A8) should be chosen those u(η) for which function u/G(u) in discontinuity point has minimal value. Here 
the corresponding solution is monotone increasing function of η, which derivative in discontinuity point η* meets Eq. (A20) 

limu′

(η)
η→η− 0

> 0 (A24) 

while 
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limu′

(η)
η→η+0

= + ∞ (A25) 

Thus, among continuum of states of equilibrium, given by piecewise continuous functions in the case II only solutions ud(η), as well as us(η) are 
feasible. The same situation takes place in the case III with the only difference that there is no smooth solution. In the case I, vice versa, only smooth 
solution us(η) is feasible. 
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