МИНОБРНАУКИ РОССИИ Ярославский государственный университет им. П.Г. Демидова

Институт фундаментальной и прикладной химии

УТВЕРЖДАЮ

Декан факультета биологии и экологии

О.А. Маракаев «21» мая 2024 г.

Рабочая программа «Кинетика и механизм гомолитических жидкофазных реакций»

Направление подготовки 04.04.01 Химия

Направленность (профиль) «Физико-органическая и фармацевтическая химия»

Форма обучения очная

Программа одобрена Программа одобрена

на заседании института НМК факультета биологии и экологии

протокол № 9 от «18» апреля 2024 года протокол № 6 от «29» апреля 2024 года

Ярославль

1. Цели освоения дисциплины

Целью освоения дисциплины является формирование у студентов системы знаний и навыков, необходимых для изучения закономерностей протекания радикальных реакций во времени; установления эмпирической связи между скоростью радикальной реакции и условиями ее проведения; выявления механизма радикальных и радикально-цепных процессов; изучения связи между строением соединений и их реакционной способностью в радикальных реакциях отрыва и присоединения.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к части, формируемой участниками образовательных отношений блока 1, является дисциплиной по выбору (Б1.В.ДВ.02.02). По содержанию и методически дисциплина связана с дисциплинами «Термодинамика и кинетика химических и биохимических процессов», «Компьютерное моделирование химических и биохимических процессов» и «Методы аналитических исследований».

Требования к входящим знаниям:

- знание основ химической кинетики, органической химии, квантовой химии;
- владение современными физико-химическими методами исследования.

Дисциплина является предшествующей для изучения специальной дисциплины «Термодинамика и кинетика химических и биохимических процессов». Знания, полученные при изучении дисциплины, используются при подготовке магистерской диссертации и в дальнейшей научно-исследовательской работе.

3. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих элементов компетенций в соответствии с ФГОС ВО, ОП ВО и приобретения следующих знаний, умений, навыков и (или) опыта деятельности:

Формируемая компетенция (код и формулировка)	Индикатор достижения компетенции (код и формулировка)	Перечень планируемых результатов обучения			
	Профессиональные	е компетенции			
ПК-5-н	ПК-5-н.3	Знать:			
Способен выдвигать	Применяет методы	 механизмы основных радикальных и 			
концепции	математической химии	радикально-цепных процессов;			
направленной	(компьютерное	– типы ингибиторов и механизмы их			
структурной	молекулярное	действия в каждом конкретном			
модификации	моделирование и	химическом процессе.			
соединения-лидера в	QSAR) для решения	Уметь:			
зависимости от	задач, связанных с	 проводить кинетический анализ 			
наличия информации о	прогнозированием	процессов окисления липидов в			
его молекулярной	возможности	присутствии антиоксидантов.			
мишени действия в	взаимодействия	Владеть навыками:			
организме	химических	проведения кинетического			
	соединений с	компьютерного моделирования			
	биологической	гомолитических биохимических			
	мишенью	процессов и анализа его результатов.			

ПК-7-н	ПК-7-н.1	Знать:
Способен	Выбирает методы	– основные методы исследования
использовать	исследования	гомолитических реакций.
теоретические	закономерностей и	Уметь:
представления химии	механизмов	– анализировать литературные данные в
для анализа	химических процессов,	области гомолитических жидкофазных
механизмов	интерпретирует и	процессов;
химических реакций и	анализирует	– обрабатывать результаты эксперимента,
реакционной	полученные результаты	получая данные по кинетическим
способности		параметрам и механизму гомолитических
органических		реакций.
соединений		Владеть:
		 кинетическими приемами и методами
		исследования элементарных реакций
		свободных радикалов.
	ПК-7-н.2	Знать:
	Проводит анализ связи	– основные проблемы в области
	строения с	гомолитических жидкофазных процессов.
	реакционной	Уметь:
	способностью	 устанавливать эмпирическую связь
	органических	между скоростью радикальной реакции и
	соединений, выявляет	условиями ее проведения;
	корреляции «структура	 проводить корреляционный анализ
	– реакционная	реакционной способности радикалов и
	способность»	антиоксидантов.
		Владеть навыками:
		 – анализа реакционной способности
		радикалов и молекул;
		– решения нетривиальных задач по
		анализу гомолитических процессов.

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 акад.ч.

№ п/п	Темы (разделы) дисциплины, их содержание	тр	вк (1	Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах) Контактная работа				Формы текущего контроля успеваемости Форма промежуточной аттестации (по семестрам)		
		Семестр	лекции	практические	лабораторные к	консультации ова	аттестационные к	самостоятельная работа	Формы ЭО и ДОТ (при наличии)	
1	Свободные радикалы	2	4	6				25	Решение задач, опрос	
2	Цепные реакции	2	4	6				30	Решение задач, опрос, контрольная работа	
	Радикально-цепные реакции окисления органических соединений	2	4	6				30	Решение задач, опрос	
4	Ингибирование цепных реакций	2	6	6 8			40	Решение задач, опрос, контрольная работа		
							0,3	8,7	Зачет	
	ИТОГО		18	26		2	0,3	133,7		

4.1 Информация о реализации дисциплины в форме практической подготовки

Информация о разделах дисциплины и видах учебных занятий, реализуемых в форме практической подготовки

№ п/п	u ,,		вк (1	люча ра(и и в ака)	учебн я сам боту с х труд цемич	остоя туден цоемн нески	ятелі нтов, сость х час	ьную сах)	Место проведения занятий в форме практической подготовки	
		Семестр	лекции	практические	лабораторные	консультации	аттестационные испытания	самостоятельная работа		
1	Свободные радикалы	2		6					Факультет биологии и экологии ЯрГУ	
2	Цепные реакции	2		6					Факультет биологии и экологии ЯрГУ	
3	Радикально-цепные реакции окисления органических соединений	2		6					Факультет биологии и экологии ЯрГУ	
4	Ингибирование цепных реакций	2		8					Факультет биологии и экологии ЯрГУ	
	ИТОГО			26						

Содержание разделов дисциплины

1. Свободные радикалы.

- 1.1. Введение. Открытие свободных радикалов.
- 1.2. Пространственная структура радикалов. Энергии диссоциации связей и энтальпии образования радикалов. Магнитные свойства свободных радикалов.
- 1.3. Генерирование свободных радикалов.
- 1.4. Специфика жидкофазных радикальных реакций. Диффузионно-контролируемые реакции. Рекомбинация и диспропорционирование радикалов.
- 1.5. Мономолекулярные реакции свободных радикалов (изомеризация, распад).
- 1.6. Реакции радикального отрыва. Реакции замещения. Реакции бирадикалов. Реакции радикального присоединения.
- 1.7. Линейные корреляции в радикальной химии. Параболическая модель бимолекулярной радикальной реакции. Триплетное отталкивание. Стерический и полярный фактор. Мультидипольное взаимодействие.
- 1.8. Окислительно-восстановительные реакции с образованием и участием свободных радикалов. Теоретические модели реакций переноса электрона. Реакции анион-радикалов.

2. Цепные реакции.

- 2.1. Цепные неразветвленные реакции. Условия реализации цепной реакции. Стадии цепной неразветвленной реакции. Кинетические закономерности цепной неразветвленной реакции.
- 2.2. Радикальная полимеризация. Механизм и кинетика. Передача цепи.
- 2.3. Окисление полимеров. Специфика протекания радикальных реакций в полимере. Миграция свободной валентности в полимере. Кинетика окисления полимеров. Диффузионный режим окисления полимеров. Окислительная деструкция полимеров.
- 2.4. Цепные разветвленные реакции. Теория цепной разветвленной реакции. Горение водорода. Цепные реакции с энергетическим разветвлением цепей. Реакция водорода со фтором. Химические лазеры на основе цепных реакций.

3. Радикально-цепные реакции окисления органических соединений.

- 3.1. Цепной механизм реакций окисления и его доказательства. Первичные молекулярные продукты. Зависимость скорости окисления от концентрации кислорода. Установление стационарной концентрации радикалов в процессе окисления.
- 3.2. Экспериментальные методы изучения кинетики и механизма жидкофазных реакций окисления. Газометрические и хемилюминесцентные методы. Методы исследования кинетики накопления продуктов окисления. Методы измерения скоростей образования свободных радикалов. Методы идентификации радикалов, образующихся в жидкофазном окислении. Методы изучения элементарных реакций пероксидных радикалов при жидкофазном окислении.
- 3.3. Элементарные реакции жидкофазного окисления. Зарождение цепей в окисляющихся углеводородах. Вырожденное разветвление цепей. Взаимодействие алкильных радикалов с кислородом. Взаимодействие пероксидных радикалов с субстратом окисления. Обрыв цепей в жидкофазном окислении.
- 3.4. Кинетика неразветвленной цепной реакции жидкофазного окисления. Кинетика вырождено-разветвленной цепной реакции жидкофазного окисления. Модели вырождено-разветвленной реакции с одним и несколькими промежуточными продуктами.
- 3.5. Продукты окислительных превращений органических соединений. Накопление гидропероксидов. Распад гидропероксидов и образование вторичных продуктов реакции. Последовательные превращения промежуточных продуктов окисления.
- 3.6. Сопряженное окисление. Роль вырожденных разветвлений. Различная активность свободных радикалов в сопряженном окислении. Роль реакций перекрестного обрыва цепей. Математические модели сложных цепных реакций окисления.
- 3.7. Связь строения с реакционной способностью при окислении органических соединений. Реакционная способность пероксидных радикалов в реакциях радикального

отрыва и присоединения. Реакционная способность двойной связи в реакциях радикального присоединения. Полярный эффект и эффект мультидипольного взаимодействия в реакциях окисления винильных соединений.

4. Ингибирование цепных реакций.

- 4.1. Принципы, лежащие в основе ингибирования цепных реакций. Кинетические характеристики ингибиторов цепных реакций.
- 4.2. Ингибирование газофазных неразветвленно-цепных процессов. Ингибирование процессов хлорирования водорода, органических соединений и оксида углерода. Ингибирование реакций распада.
- 4.3. Кинетика ингибированной полимеризации. Ингибиторы радикальной полимеризации. Самоингибирование радикальной полимеризации. Ингибирование полимеризации на глубоких стадиях.
- 4.4. Кинетическая классификация ингибиторов окисления. Емкость, сила и эффективность ингибиторов окисления. Базовые механизмы ингибированного окисления углеводородов. Влияние среды на активность ингибиторов.
- 4.5. Фенолы как ингибиторы окисления. Прочность О–Н-связей фенолов. Реакции фенолов с перекисными радикалами. Побочные реакции фенолов. Реакции феноксильных радикалов.
- 4.6. Ароматические амины как ингибиторы окисления. Энергии диссоциации N–H-связей ароматических аминов. Реакция ароматических аминов с перекисными радикалами. Реакции аминильных радикалов.
- 4.7. Каталитический и многократный обрыв цепей окисления. Восстановительная активность оксипероксильных радикалов. Многократный обрыв цепей окисления. Катализированный кислотами циклический обрыв цепей.

5. Образовательные технологии, в том числе технологии электронного обучения и дистанционные образовательные технологии, используемые при осуществлении образовательного процесса по дисциплине

В процессе обучения используются следующие образовательные технологии:

Вводная лекция – дает первое целостное представление о дисциплине и ориентирует студента в системе изучения данной дисциплины. Студенты знакомятся с назначением и задачами курса, его ролью и местом в системе учебных дисциплин и в системе подготовки в целом. Дается краткий обзор курса, история развития науки и практики, достижения в этой сфере, имена известных ученых, излагаются перспективные направления исследований. На этой лекции высказываются методические и организационные особенности работы в рамках данной дисциплины, а также дается анализ рекомендуемой учебно-методической литературы.

Академическая лекция (или лекция общего курса) – последовательное изложение материала, осуществляемое преимущественно в виде монолога преподавателя с применением мультимедийных презентаций. Требования к академической лекции: современный научный уровень и насыщенная информативность, убедительная аргументация, доступная и понятная речь, четкая структура и логика, наличие ярких примеров, научных доказательств, обоснований, фактов.

Практическое занятие – занятие, посвященное освоению конкретных умений и навыков и закреплению полученных на лекции знаний.

Консультации — групповые занятия, являющиеся одной из форм контроля самостоятельной работы студентов.

Для организации самостоятельной работы студентов и проведения текущего контроля успеваемости (в форме тестов и заданий) используются дистанционные технологии в виде электронного учебного курса (ЭУК) в системе Moodle ЯрГУ. В ЭУК сохраняются оценки, полученные учащимися в процессе изучения курса.

6. Перечень лицензионного и (или) свободно распространяемого программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине

При осуществлении образовательного процесса используются для формирования материалов для текущего контроля успеваемости и проведения промежуточной аттестации, для формирования методических материалов по дисциплине:

- операционные системы семейства Microsoft Windows;
- программы Microsoft Office;
- программа Adobe Acrobat Reader;
- браузеры Mozilla Firefox, Google Chrome.

7. Перечень современных профессиональных баз данных и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)

- 1. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/. База данных содержит информацию о константах скорости и энергиях активации элементарных реакций, протекающих в газовой фазе.
- 2. NIST Solution Kinetics Database. https://kinetics.nist.gov/solution/. База данных содержит информацию о константах скорости и энергиях активации элементарных реакций, протекающих в жидкой фазе.
- 3. Автоматизированная библиотечно-информационная система «БУКИ-NEXT» http://www.lib.uniyar.ac.ru/opac/bk_cat_find.php

8. Перечень основной и дополнительной учебной литературы, ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости), рекомендуемых для освоения дисциплины

а) основная литература

- 1. Плисс Е.М. Кинетика гомолитических жидкофазных реакций [Электронный ресурс]: учеб. пособие для студентов, обучающихся по направлению Химия. / Е.М. Плисс, Е.Т. Денисов; Яросл. гос. ун-т им. П.Г. Демидова, Науч.-метод. совет ун-та; Учебно-методическое объединение по классическому университетскому образованию Ярославль: ЯрГУ, 2015. 310 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20150304.pdf
- 2. Плисс Е.М. Применение спектральных методов для исследования механизма химических реакций [Электронный ресурс]: метод. указания для студентов, обучающихся по направлению Химия. / Е.М. Плисс, И.В. Тихонов, А.И. Русаков; Яросл. гос. ун-т им. П.Г. Демидова, Науч.-метод. совет ун-та Ярославль: ЯрГУ, 2013. 74 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20130303.pdf

б) дополнительная литература

- 1. Черепанов, В.А. Химическая кинетика: учебное пособие для вузов / В.А. Черепанов, Т.В. Аксенова. Москва: Издательство Юрайт, 2021. 130 с. (Высшее образование). ISBN 978-5-534-10878-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/473812
- 2. Физико-химические методы анализа : учебное пособие для вузов / В.Н. Казин [и др.] ; под редакцией Е.М. Плисса. Москва : Издательство Юрайт, 2021. 201 с. (Высшее образование). ISBN 978-5-534-14964-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/485733
- 3. Тихонов И.В. Химическая кинетика [Электронный ресурс]: практикум. / И.В. Тихонов, А.В. Сирик, А.М. Гробов; Яросл. гос. ун-т им. П.Г. Демидова Ярославль: ЯрГУ, 2020. 48 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20200303.pdf

в) ресурсы сети «Интернет»

1. Денисов Е.Т. Радикальные реакции в химии, технологии и живом организме: лекции. – http://lion.icp.ac.ru/e-learn/denisov/

- 2. Электронная библиотека учебных материалов ЯрГУ (http://www.lib.uniyar.ac.ru/opac/bk_cat_find.php).
- 3. Научная библиотека ЯрГУ им. П.Г. Демидова (доступ к лицензионным современным библиографическим, реферативным и полнотекстовым профессиональным базам данных и информационным справочным системам: реферативные базы данных Web of Science, Scopus; научная электронная библиотека eLIBRARY.RU; электронно-библиотечные системы Юрайт, Проспект, издательства «ЛАНЬ»; базы данных Polpred.com, «Диссертации РГБ (авторефераты)», ProQuest Dissertations and Theses Global; электронные коллекции Springer; издательство Elsevier на платформе ScienceDirect; журналы Science (The American Association for the Advancement of Science (AAAS), Nature Publishing Group, Американского химического общества Core Package Web Edition (American Chemical Society ACS) и др.) http://www.lib.uniyar.ac.ru/content/resource/net_res.php
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" (http://window.edu.ru/library).

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине включает в свой состав специальные помещения:

- учебные аудитории для проведения занятий лекционного типа;
- учебные аудитории для проведения практических занятий (семинаров);
- учебные аудитории для проведения групповых и индивидуальных консультаций;
- учебные аудитории для проведения текущего контроля и промежуточной аттестации;
- помещения для самостоятельной работы;
- помещения для хранения и профилактического обслуживания технических средств обучения.

Специальные помещения укомплектованы средствами обучения, служащими для представления учебной информации большой аудитории (ноутбук и/или персональный компьютер, мультимедиа-проектор, настенный проекционный экран).

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, хранящиеся на электронных носителях и обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Число посадочных мест в лекционной аудитории больше либо равно списочному составу потока, а в аудитории для практических занятий — списочному составу группы обучающихся.

Авторы:

Директор института фундаментальной и прикладной химии, д.х.н., профессор

Доцент института фундаментальной и прикладной химии, к.х.н.

Е.М. Плисс

Пим И.В. Тихонов

Приложение №1 к рабочей программе дисциплины «Кинетика и механизм гомолитических жидкофазных реакций»

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

1. Типовые контрольные задания и иные материалы, используемые в процессе текущего контроля успеваемости

Задания для самостоятельной работы

Проверка выполнения осуществляется путем опроса и решения задач у доски в процессе практических занятий.

Задания по теме № 1 «Свободные радикалы»

- 1. Вычислить энтальпии образования следующих радикалов (в стандартных условиях: 298 К, 1 атм): Me^{\bullet} , Et^{\bullet} , $Me_2C^{\bullet}H$, Me_3C^{\bullet} , $PhC^{\bullet}H_2$ и $H_2C=C^{\bullet}H$, если $\Delta H(CH_4) = -74.8$ кДж/моль, $\Delta H(C_2H_6) = -84.7$, $\Delta H(CH_3CH_2CH_3) = -103.8$, $\Delta H(Me_3CH) = -134.5$, $\Delta H(PhCH_3) = 50.0$, $\Delta H(CH_2=CH_2) = 52.3$ и D(H-H) = 436.0 кДж/моль, а D(R-H) равны (кДж/моль): 440 (CH_4), 422 (C_2H_6), 412 ($CH_3CH_2CH_3$), 400 (CH_3CH_3), 475 (CH_3CH_3), 464 (CH_4CH_3).
- 2. Оценить по аддитивной схеме энтальпию образования каждого из трех пентильных радикалов: $CH_3(CH_2)_3C^{\bullet}H_2$; $(CH_3)_2CHC^{\bullet}HCH_3$ и $(CH_3)_2C^{\bullet}CH_2CH_3$. Энтальпии образования групп (в кДж/моль) равны $\Delta H(C-(C)(H)_3) = -42,2$, $\Delta H(C-(C)_2(H)_2) = -20,7$, $\Delta H(C-(C)_3(H)) = -7,9$, $\Delta H(C^{\bullet}-(C)(H)_2) = 160,7$, $\Delta H(C^{\bullet}-(C)_2(H)) = 171,5$, $\Delta H(C^{\bullet}-(C)_3) = 171,5$.
- 3. По данным иодометрического анализа концентрация дибензоилпероксида в бензоле при 100°C меняется во времени следующим образом:

<i>t</i> , мин :	0	3	5	10	20	35	60
$[(C_6H_5CO_2)_2]\cdot 10^2$, (моль/л):	2	1,79	1,64	1,36	0,93	0,49	0,19

Определить константу скорости реакции.

- 4. За расходованием распада азоизобутиронитрила следят волюмометрически по выделению газообразного азота N_2 . Какому кинетическому закону подчиняется кинетика выделения азота? Как долго следует вести эксперимент при 100° C до полного распада этого инициатора? Каков объем N_2 (при 298 К и 1 атм), который выделится из $[RN_2R]_0 = 0.05$ моль/л при объеме раствора, где идет распад, 10 см^3 ?
- 5. Рассчитать энтальпию реакции озона с наиболее слабой с С–H-связью следующих углеводородов: толуола ($D_{\text{C-H}} = 375,0$), этилбензола ($D_{\text{C-H}} = 364,1$), кумола ($D_{\text{C-H}} = 354,7$), тетралина ($D_{\text{C-H}} = 349,6$) и трифенилметана ($D_{\text{C-H}} = 346,0$); прочность О-H-связи в радикале HO_3^{\bullet} $D_{\text{O-H}} = 350,4$ кДж/моль.
- 6. Какова этальпии реакций $PhCH_3 + X_2 \rightarrow PhC^{\bullet}H_2 + HX + X^{\bullet}$ для различных молекул галоидов? В метильной группе толуола $D_{C-H} = 375$ кДж/моль, $D_{X-X} = 158,7$ для F_2 , 242,6 для Cl_2 , 192,8 для Br_2 . Прочность связи $D_{F-H} = 570,3$ кДж/моль, $D_{Cl-H} = 431,6$ и $D_{Br-H} = 366,6$ кДж/моль.
- 7. Рассчитать этальпию реакций ретродиспропорционирования между стиролом и рядом RH (те же, что в задаче 5), если энтальпии $\Delta H(\text{PhCH=CH}_2) = 147,4$ кДж/моль и $\Delta H(\text{PhC}^{\bullet}\text{HCH}_3) = 175,9$ кДж/моль.
- 8. При распаде азоизобутиронитрила в бензоле при 333К вероятность выхода радикалов в объем из клетки составляет 0,50. Вязкость растворителя равна 0,39 сп. Какова будет вероятность выхода радикалов в объем из клетки при распаде азоизобутиронитрила в следующих растворителях (333К):

Растворитель	Диэтиловый эфир	Гептан	Октан	Додекан	CCl ₄
Вязкость, сп	0,17	0,29	0,54	0,72	0,58

- 9. Оценить частоту столкновений молекул ССІ₄ в жидком состоянии при 300 К. Амплитуда колебаний молекулы $a = v_f^{1/3}$. Теплота испарения CCl_4 30 кДж/моль. Отношение скорости звука в CCl_4 и газе $u_{xx}/u_{yy} = 4$.
- 10. Рекомбинация бензильных радикалов в бензоле при 293 К происходит с константой скорости $2k_{\rm t}=8.82\cdot10^9\,{\rm n/(моль\cdot c)}$. Вязкость растворителя равна $0.65\,{\rm cn}$. Какова будет константа скорости рекомбинации этих радикалов в следующих растворителях (293K):

Растворитель	Гексан	Гептан	Октан	Декан	Додекан	Тетралин
Вязкость, сп	0,32	0,41	0,54	0,77	1,26	2,02

11. Термолиз дикумилпероксида (ROOR) проводили при температуре 413 К в серии реагентов (RH) и анализировали количества образовавшихся ацетофенона и метилфенилкарбинола. Получены следующие результаты:

RH	PhCH ₃	PhCH ₂ Me	PhCHMe ₂	Ph ₂ CH ₂	Тетралин
[ROH]/[MeCOPh]	0,681	0,816	0,695	0,550	5,35

Вычислить константы скорости реакций кумилоксильного радикала с наиболее активной С-H-связью RH, если распад кумилоксильного радикала на ацетофенон и метильный радикал протекает с константой скорости $2.5 \cdot 10^{12}$ exp(-46000/RT) c⁻¹.

12. Реакция трифторметильных радикалов с олефинами изучалась в растворе изооктана. Радикалы генерировались путем фотолиза гексафторметана. Олефин вводился в концентрации 0,06 моль/л. Концентрация изооктана равна 6 моль/л. Температура опыта 338 К. Измерялось количество образовавшегося трифторметана в отсутствие и в присутствии олефина при стандартном проведении опыта. Ниже приведены результаты эксперимента, [СF₃H]₀ – концентрация СF₃H, образовавшегося в изооктане в отсутствие олефина, а [СF₃H] – его концентрация, образовавшаяся в присутствии олефина, $\Delta[CF_3H] = [CF_3H]_0 - [CF_3H]$. Получены следующие результаты

 $CH_2=CH_2$ CH₂=CHMe CH₂=CHCMe₃ Олефин $CH_2=CMe_2$

Вычислить на основании этих данных константы скорости реакции ${\operatorname{CF}_3}^{\bullet}$ радикалов с олефинами, если ${\rm CF_3}^{\bullet}$ отрывает атом H от изооктана с константой скорости $k=1.04\cdot10^6$ л/(моль⋅с) при 338 К.

13. При фотолизе ацетона в газовой фазе параллельно протекают следующие реакции с участием метильных радикалов:

$$CH_3COCH_3 + hv \rightarrow CH_3C^{\bullet}O + C^{\bullet}H_3$$

$$C^{\bullet}H_3 + CH_3COCH_3 \rightarrow CH_4 + CH_3COC^{\bullet}H_2(k)$$

$$C^{\bullet}H_3 + C^{\bullet}H_3 \rightarrow C_2H_6 (2k_t)$$

Как определить константу скорости реакции метильных радикалов с ацетоном, если экспериментально измерены количества метана и этана, образовавшихся в результате фотолиза ацетона, и известна константа скорости рекомбинации метильных радикалов $(2k_{t})$?

14. Функция Гаммета для пара-заместителей X и константа скорости реакции RO₂• с каждым из стерически затрудненных фенолов соответственно равны:

X	Н	NO_2	Me ₃ C	Me	Me ₃ CO	MeO
$k \cdot 10^{-4}$ л/(моль·с	1,1	0,16	3,3	3,7	12,0	23,0
σ	0	0,778	-0,197	-0,170	-0,32	0,268

Выполняется ли линейная корреляция Гаммета для этой серии реакций?

15. Вычислить энергии активации реакций $RO_2^{\bullet} + R_i H \rightarrow ROOH + R_i^{\bullet} (RO_2^{\bullet} -$ вторичный алкилпероксильный радикал) для следующих алкилароматических углеводородов.

Параметры, необходимые для расчета, равны: $\alpha = 0.814$, $br_e = 14,74$ (кДж/моль)^{0,5}, $0.5hL(v_i - v_f) = -3.8$ кДж/моль, D(ROO-H) = 365.5 кДж/моль.

16. Оценить вклад энтальпии реакции в энергию активации для реакций класса $H^{\bullet} + R_i H \rightarrow H_2 + R_i^{\bullet}$ при разных ΔH_e . Параметры этого класса реакций: $\alpha = 0,904$, $br_e = 15,12$ (кДж/моль)^{0,5}.

17. Присоединение атома водорода к непредельным соединениям CH₂=CHX характеризуется следующими значениями энтальпии и энергии активации (кДж/моль):

1		7 13			1	
	CH ₂ =CHX	CH ₂ =CH ₂	CH ₂ =CHMe	$CH_2=CMe_2$	цикло- C_5H_8	CH ₂ =CHCl
	$-\Delta H$	154,6	157,8	161,4	150,8	172,0
	E	13,9	11,6	9,3	16,5	11,1
	ΔE	0,0	-2,3	-4,6	2,6	-2,8
	ΔΔΗ	0,0	-3,2	-6,8	3,8	-17,4

Определить коэффициент α' в уравнении Эванса-Семенова для этой группы соединений.

18. Атом водорода присоединяется к этилену с константой скорости $3,85\cdot10^8$ л/(моль·с) в газовой фазе при 298 К. Определить параметры br_e и E_e для этой реакции. Необходимые для расчета параметры приведены в таблице. Энтальпия реакции равна минус 154,6 кДж/моль.

Реакция	α	$b \cdot 10^{-11}$,	0.5hLv,	$\Delta\Delta H_{\mathrm{e}},$	$A \cdot 10^{-10}$
		$(кДж/моль)^{0,5}/м$	кДж/моль	кДж/моль	л/(моль·с)
$H^{\bullet} + CH_2 = CHR$	1,440	5,389	9,9	-7,5	10

Задания по теме № 2 «Цепные реакции»

1. Цепная реакция бромирования водорода включает в себя следующие стадии:

$$Br_{2} + M \rightarrow Br^{\bullet} + Br^{\bullet} + M \qquad (i)$$

$$Br^{\bullet} + H_{2} \rightarrow HBr + H^{\bullet} \qquad (1)$$

$$H^{\bullet} + Br_{2} \rightarrow HBr + Br^{\bullet} \qquad (2)$$

$$H^{\bullet} + HBr \rightarrow H_{2} + Br^{\bullet} \qquad (3)$$

$$Br^{\bullet} + Br^{\bullet} + M \rightarrow Br_{2} + M \qquad (t)$$

Какой вид имеет скорость этой цепной реакции как функция от концентраций реагентов?

2. Дана кинетическая схема радикального хлорирования тетрахлорэтилена в растворе CCl_4 :

$$Cl_{2} \rightarrow 2Cl^{\bullet} \qquad k_{1}$$

$$Cl^{\bullet} + C_{2}Cl_{4} \rightarrow C_{2}Cl_{5}^{\bullet} \qquad k_{2}$$

$$C_{2}Cl_{5}^{\bullet} + Cl_{2} \rightarrow Cl^{\bullet} + C_{2}Cl_{6} \qquad k_{3}$$

$$2C_{2}Cl_{5}^{\bullet} \rightarrow C_{2}Cl_{6} + C_{2}Cl_{4} \qquad k_{4}$$

Используя приближение стационарных концентраций, получите выражение для скорости образования гексахлорэтана.

3. Стирол полимеризуется в массе ([PhCH=CH₂] = 8,7 моль/л) в присутствии инициатора, который создает скорость инициирования, равную 10^{-8} моль/л с. Константы скорости продолжения и обрыва цепи (л/(моль·с)) равны: $k_p = 2,4\cdot10^8 \exp(-37,6/RT)$, $2k_t = 7,0\cdot10^8 \exp(-6,3/RT)$. С какой скоростью происходит полимеризация стирола при 50,

- 60, 70, 80 и 90°С? Чему равна кинетическая длина цепи ν при 80°С и скоростях инициирования $W_i = 5 \cdot 10^{-7}$; 10^{-8} ; $5 \cdot 10^{-8}$ и 10^{-7} моль/(л·с)?
- 4. Стирол полимеризуется в растворителе RH, который участвует в передаче цепи. Концентрация стирола [PhCH=CH₂] = 0,5 моль/л, температура опыта 60°C, скорость инициирования $W_i = 10^{-8}$ моль/(л·с), отношение констант скорости $k_p/(2k_t)^{0.5} = 0.037$ (л/моль·с)^{0,5}. Чему равна средняя степень полимеризации стирола, когда он полимеризуется в массе и когда полимеризация протекает в растворителе? Константы передачи цепи в растворителях равны: PhCH₃ ($C_S = 1,6\cdot10^{-5}$), PhCHMe₂ ($C_S = 1,8\cdot10^{-4}$), цикло- C_6H_{12} ($C_S = 4,0\cdot10^{-6}$), Ме₂CHOH ($C_S = 8,0\cdot10^{-5}$), цикло-(CH₂OCH₂OCH₂OCH₂) ($C_S = 2,75\cdot10^{-4}$). В стироле константы передачи цепи $C_m = 6,0\cdot10^{-5}$.
- 5. Изотактический полипропилен окисляется, его окисление сопровождается деструкцией в результате мономолекулярного распада радикалов PO_2^{\bullet} . Окисление происходит в кинетической области и протекает как автоокисление. Степень полимеризации полимера 10000. Параметр $a=k_p(PH)/(2k_t)^{0.5}=3\cdot10^6 \exp(-57000/RT)$ (кг/(моль·с))^{0.5}; распад РООН на радикалы происходит с константой скорости $k_i=1,6\cdot10^7 \exp(-87000/RT)$ с⁻¹, $\alpha=[POOH]/\Delta[O_2]=0,6$, а отношение $k_s/k_p[PH]=1,6\cdot10^{-2}$. За какое время подвергнется деструкции 50% макромолекул полипропилена при 370, 390, 410 и 430 К?
- 6. Верхний предел воспламенения стехиометрической смеси $2H_2+O_2$ при $800~{\rm K}$ равен 42 мм Hg. Обрыв цепей в этих условиях происходит по реакции

$$H^{\bullet} + O_2 + M \rightarrow HO_2^{\bullet} + M$$
, (5)

где M — третья частица (H_2 или O_2), с константой скорости $3,6\cdot 10^9$ л/(моль·с). Оценить константу скорости разветвления цепей в этих условиях.

7. Нижний предел по давлению p_1 воспламенения стехиометрической смеси $H_2 + O_2$ составляет 131 Па при 700 К. При введении 1 % метана этот предел возрастает до $p_1' = 172$ Па. На основании этих данных вычислить константу скорости реакции атомов водорода с метаном.

Задания по теме № 3 «Радикально-цепные реакции окисления органических соединений»

1. Окисление кумола (RH) при 373 К протекает как вырожденно-разветвленный цепной процесс по механизму:

$$I \xrightarrow{+O_2 + RH} R^{\bullet}$$
 R^{\bullet} W_i $R^{\bullet} + O_2 \rightarrow RO_2^{\bullet}$ k_1 $RO_2^{\bullet} + RH \rightarrow R^{\bullet}$ k_2 $ROOH \xrightarrow{+O_2 + RH} 2RO_2^{\bullet}$ k_3 $RO_2^{\bullet} + RO_2^{\bullet} \rightarrow \text{продукты}$ k_6

Выведите кинетическое уравнение для скорости накопления гидропероксида.

- 2. Окисление RH по радикальному механизму становится цепным, когда реакция $RO_2^{\bullet} + RH$ протекает быстрее, чем обрыв цепей по реакции $RO_2^{\bullet} + RO_2^{\bullet}$. Для кумола: $k_p = 10^7 \cdot \exp(-43200/RT)$ л/(моль·с), $2k_t = 1,6\cdot 10^9 \cdot \exp(-25100/RT)$ л/(моль·с). При какой температуре, если ее повышать, будет наблюдаться переход от нецепной к цепной реакции при скорости инициирования $W_i = 2\cdot 10^{-8}$ моль/(л·с)?
- 3. Для определения кинетических характеристик распада гидропероксида в окисляющемся углеводороде используется метод смешанного инициирования. В углеводород, содержащий ROOH, вводят инициатор. Константа скорости его распада на радикалы k_i известна. В серии опытов с измерением скорости ν цепного окисления RH получают результаты, позволяющие изучить кинетику распада ROOH и вычислить характеристики этого распада. Кумол RH окисляли при 373 К в присутствии, сначала [ROOH] $_0 = 0.1$ моль/л и разных концентраций дикумилпероксида [ROOR], а затем

проводили опыты по окислению RH с разными концентрациями [ROOH] $_0$, измеряя начальную скорость поглощения кислорода v. Результаты опытов по совместному инициированию окисления [ROOR] + [ROOH] приведены ниже:

$[ROOH]_0 = 0,1$ моль/л								
[ROOR], моль/л 0,02 0,04 0,08 0,10								
$v \cdot 10^5$ моль/(л·с) 2,73 3,27 4,17 4,								
	$[ROOR]_0 = 0$							
[ROOH], моль/л 0,10 0,50 1,0 2,0								
$v \cdot 10^5$ моль/(л·с)	2,06	4,77	6,88	9,48				

Использовать эти результаты для оценки того, как v_i зависит от [ROOH] и какова константа скорости ее распада на радикалы. Константа скорости распада ROOR на радикалы $k_i = 4.3 \cdot 10^{14} \exp(-144300/RT)$ с⁻¹.

Задания по теме № 4 «Ингибирование цепных реакций»

1. Полимеризация стирола (M), ингибированная стабильными нитроксильными радикалами (>NO $^{\bullet}$) в режиме только линейного обрыва цепей описывается упрощенной схемой:

$$I \xrightarrow{+M} R^{\bullet} \qquad W_{i}$$

$$R^{\bullet} + M \to R^{\bullet} \qquad k_{p}$$

$$R^{\bullet} + >NO^{\bullet} \to >NOR \qquad k_{NO}$$

Выведите кинетическое уравнение для скорости процесса ингибированного окисления. Определите порядки реакции по стиролу, нитроксильному радикалу и инициатору.

2. Механизм окисления стирола (M), ингибированного гидрохиноном (QH₂) при отсутствии квадратичного обрыва цепей описывается упрощенной схемой:

$$I \xrightarrow{+O_2 + M} R^{\bullet} \qquad W_i$$

$$R^{\bullet} + O_2 \to RO_2^{\bullet} \qquad k_1$$

$$RO_2^{\bullet} + M \to R^{\bullet} \qquad k_2$$

$$RO_2^{\bullet} + QH_2 \to ROOH + QH^{\bullet} \qquad k_7$$

$$QH^{\bullet} + QH^{\bullet} \to QH_2 + Q \qquad k_9$$

Выведите кинетическое уравнение для скорости процесса ингибированного окисления. Определите порядки реакции по стиролу, гидрохинону, кислороду и инициатору.

- 3. Кумол RH окисляется в режиме автоокисления и в него вводится пара-крезол InH, который тормозит окисление, реагируя с RO_2^{\bullet} . Зарождение цепей происходит по реакции RH с O_2 с $k_{i0}=9.5\cdot10^6\cdot\exp(-113000/RT)$ л/(моль·с), растворимость O_2 в кумоле $\gamma=3.0\cdot10^{-8}$ моль/(л·Па), парциальное давление O_2 составляет 10^5 Па. Константы скорости: $k_2(\mathrm{RH}+\mathrm{RO}_2^{\bullet})=1.0\cdot10^7\cdot\exp(-41600/RT)$ л/(моль·с), $k_7(\mathrm{RO}_2^{\bullet}+\mathrm{InH})=3.2\cdot10^7\cdot\exp(-21700/RT)$ л/(моль·с) и $\beta=k_i/k_\mathrm{d}=0.1$. Оценить период индукции τ , вызванный введением паракрезола в концентрации [InH] = $2\cdot10^{-3}$ моль/л при окислении кумола при 373 К.
- 4. Метод сопряженного окисления спирта HR_iOH с углеводородом RH в присутствии ингибитора Q, селективно реагирующего с пероксидными радикалами $Ri(OH)OO^{\bullet}$, позволяет вычислять по измеряемой экспериментально скорости окисления v отношение констант скорости реакций RO_2^{\bullet} с HR_iOH (k_{2i}) и RO_2^{\bullet} с RH (k_2). Хинон Q вводится в такой концентрации, что образующиеся из спирта пероксильные радикалы тотчас реагируют с хиноном. Оценить k_{2i} для спиртов HR_iH на основании опытов по окислению смесей RH(циклогексен) + HR_iH в присутствии Π -бензохинона с инициатором $[AUBH] = 3 \cdot 10^{-3}$ моль/л ($k_i = 1, 2 \cdot 10^{-5}$ с⁻¹ при 333 K), $p(O_2) = 10^5$ Π a, [RH] = 8,55 моль/л. Константа скорости $k_2 = 8,25$ л/(моль·с).

Спирт	EtOH	BuOH	Me ₂ CHOH	цикло- $C_6H_{11}OH$	PhCH ₂ OH
[HRiOH], моль/л	0,51	0,33	0,39	0,47	0,29
$v \cdot 10^6 \text{л/(моль} \cdot \text{c})$	1,29	3,02	1,53	1,02	0,81

Примеры контрольных работ

Контрольная работа № 1

1. Вторичные пероксильные радикалы реагируют со стерически затрудненными фенолами 2,6-СМе₃-4-X-С₆H₂OH (ArOH) по реакции: RO_2^{\bullet} + HOAr \rightarrow ROOH + ArO $^{\bullet}$. Прочность О–H-связи в феноле и константа скорости, в зависимости от пара-заместителя X при 333 К в углеводородном растворе, соответственно, равны:

X	Н	NO_2	Me ₃ C	Me	Me ₃ CO	MeO
D, кДж/моль	346,4	358,0	339,7	339,0	331,3	327,0
$k \cdot 10^{-4}$, л/(моль·с)	1,1	0,16	3,3	3,7	12,0	23,0

Определите параметр а в уравнении Поляни-Семенова.

2. Вычислите в рамках параболической модели параметр $br_{\rm e}$ для серии реакций ${\rm Me_3CO^{\bullet}}$ + ${\rm RH}$ \rightarrow ${\rm Me_3COH}$ + ${\rm R^{\bullet}}$, где ${\rm RH}$ — алкилароматический углеводород. Необходимые для расчета параметры имеют следующие значения: $\alpha=0.796$; $0.5hv_{\rm i}L=17.4$ кДж/моль; $0.5hv_{\rm i}L=21.7$ кДж/моль; предэкспоненциальный фактор $A_{\rm C-H}=1\cdot10^8$ л/(моль·с), $D_{\rm O-H}=439.7$ кДж/моль. Величины $D_{\rm R-H}$ и k (333 K) имеют следующие значения:

RH	PhCH ₃	PhCH ₂ Me	PhCHMe ₂	Ph ₂ CH ₂	Тетралин
$D_{ m R-H}$, кДж/моль	375,0	364,1	354,7	356,8	345,6
$k \cdot 10^{-5}$, л/(моль·с)	8,3	36,0	19,0	30,0	150

- **3.** В реакционном сосуде, содержащем эквимолярную смесь водорода с хлором, фотохимически генерируются атомы хлора со скоростью $W_i = 10^{-10}$ моль/(л·с). Условия протекания реакции: T = 298 K, p = 1 атм. Обрыв цепей происходит в объеме в результате рекоминации атомов хлора в тройных столкновениях со скоростю $W_t = 3 \cdot 10^{10} [\text{Cl}^{\bullet}]^2 [\text{M}]$. Какова квазистационарная концентрация атомов хлора и водорода в этой системе? С какой скоростью протекает эта цепная реакция? Чему равна длина цепи этой реакции?
- **4.** Для стехиометрической смеси $2H_2+O_2$ давление на втором пределе воспламенения равно: $p_2=1,14\cdot 10^5$ Па. Смесь разбавили азотом в 2 раза. Константа скорости k тройного столкновения $H^{\bullet}+O_2+M\to HO_2^{\bullet}+M$ зависит от сталкивающейся с H^{\bullet} и O_2 молекулы M: $k(N_2)/k(H_2)=0,43$ и $k(O_2)/k(H_2)=0,35$. Как изменится от разбавления величина p_2 ?

Контрольная работа № 2

- **1.** В процессе автоокисления углеводорода скорость его окисления возрастает, а длина цепи уменьшается. Если образующийся ROOH распадается только на свободные радикалы, то наступает такой режим, когда длина цепи v = 1, а [ROOH] = [ROOH]_{max}. Исследуйте зависимость [ROOH]_{max} от [RH]. Вычислите величину [ROOH]_{max} для окисления тетралина при [RH]₀ = 1,0 моль/л. Температура окисления 400 K, $k_p = 6.10^6 \cdot \exp(-34700/RT)$, $2k_t = 8.7 \cdot 10^9 \cdot \exp(-18000/RT)$ л/(моль·с), $k_i = 1.10^{13} \exp(-12000/RT)$ с⁻¹.
- **2.** Механизм окисления стирола (M), ингибированного стабильными нитроксильными радикалами $(>NO^{\bullet})$ в режиме только линейного обрыва цепей описывается упрощенной схемой:

$$I \xrightarrow{+O_2 + M} R^{\bullet} \qquad W_i$$

$$R^{\bullet} + O_2 \to RO_2^{\bullet} \qquad k_1$$

$$RO_2^{\bullet} + M \to R^{\bullet} \qquad k_2$$

$$R^{\bullet} + > NO^{\bullet} \rightarrow > NOR$$
 k_3

Выведите кинетическое уравнение для скорости процесса ингибированного окисления. Определите порядки реакции по стиролу, нитроксильному радикалу, кислороду и инициатору.

3. Стирол окисляется молекулярным кислородом $(p(O_2) = 1 \text{ атм})$ при 333 K с инициатором (АИБН). Скорость его окисления $W_0 = 1,22\cdot10^{-5}$ моль/(л·с), скорость инициирования $W_i = 3,0\cdot10^{-8}$ моль/(л·с). В стирол вводится ингибитор пара-метоксифенол, обрывающий цепи по реакции с $\mathrm{RO_2}^{\bullet}$, в концентрации [InH] = $2,5\cdot10^{-4}$ моль/л. Скорость ингибированного окисления при этом составила $W = 3,84\cdot10^{-7}$ моль/(л·с), а измеренный период индукции оказался равен 21,7 мин. Вычислить на основании этих данных величину константы скорости k_7 ($\mathrm{RO_2}^{\bullet}$ + InH) и стехиометрического коэффициента ингибирования f. Константа скорости продолжения цепи при 333 K $k_2 = 147$ л/(моль·с).

Критерии оценивания результатов текущего контроля успеваемости

Форма текущего	Правила выставления оценки
контроля	
успеваемости	
Опрос	- Отлично выставляется за полный ответ на поставленный вопрос с включением в содержание ответа рассказа (лекции) преподавателя, материалов учебников, дополнительной литературы без наводящих вопросов Хорошо выставляется за полный ответ на поставленный вопрос в объеме рассказа (лекции) преподавателя с включением в содержание ответа материалов учебников с четкими положительными ответами на наводящие вопросы преподавателя Удовлетворительно выставляется за ответ, в котором озвучено более половины требуемого материала, с положительным ответом на большую часть наводящих вопросов Неудовлетворительно выставляется за ответ, в котором озвучено менее половины требуемого материала или не озвучено главное в содержании вопроса с отрицательными ответами на наводящие вопросы, или обучающийся отказался от ответа без предварительного объяснения уважительных причин.
Решение задач	- Отлично выставляется, если задание выполнено полностью Хорошо выставляется, если задание выполнено полностью с незначительными ошибками Удовлетворительно выставляется, если обучающийся приступил к выполнению задания, наметил алгоритм решения, но допустил серьезные ошибки на этапах решения Неудовлетворительно выставляется, если обучающийся не приступал к выполнению задания или не смог выработать алгоритм его решения.
Контрольная работа	- Отлично выставляется, если обучающийся выполнил работу (общий процент выполнения заданий не менее 90%), демонстрирует знания теоретического и практического материала по теме работы, даёт правильный алгоритм решения Хорошо выставляется, если обучающийся выполнил работу с небольшими недочетами (общий процент выполнения заданий не менее 70%), демонстрирует знания теоретического и практического материала по теме работы, допуская незначительные неточности при их применении и выборе алгоритма решения.

- *Удовлетворительно* выставляется, если обучающийся в целом выполнил работу (общий процент выполнения заданий не менее 50%), допуская существенные недочеты, в том числе при выборе алгоритма решения.
- Неудовлетворительно выставляется, если обучающийся не справился с выполнением задания (общий процент выполнения заданий менее 50%), не смог выбрать алгоритм его решения, продемонстрировав существенные пробелы в знаниях основного учебного материала.

Фонды оценочных средств по дисциплине предусматривают проверку индикаторов достижения компетенций.

2. Список вопросов и (или) заданий для проведения промежуточной аттестации

Список вопросов к зачету

- 1. Пространственная структура радикалов. Энергии диссоциации связей и энтальпии образования радикалов. Магнитные свойства свободных радикалов.
- 2. Инициаторы свободно-радикальных реакций.
- 3. Бимолекулярные реакции генерирования радикалов. Окислительно-восстановительные реакции генерирования радикалов.
- 4. Изомеризация свободных радикалов. Распад свободных радикалов.
- 5. Реакции радикального отрыва.
- 6. Реакции радикального замещения.
- 7. Линейные корреляции в радикальной химии.
- 8. Модель пересекающихся парабол бимолекулярной радикальной реакции.
- 9. Триплетное отталкивание в бимолекулярной радикальной реакции. Влияние соседних π-электронов в бимолекулярной радикальной реакции.
- 10. Стерический, полярный факторы и мультидипольное взаимодействие в бимолекулярной радикальной реакции.
- 11. Энтальпия и энтропия реакций радикального присоединения. Параболическая модель реакции радикального присоединения.
- 12. Вклад энтальпии реакции присоединения в ее энергию активации. Триплетное отталкивание в реакции присоединения. Взаимодействие полярных групп в реакции присоединения.
- 13. Теоретические модели реакций переноса электрона. Реакции ионов с молекулами, атомами и радикалами. Реакции анион-радикалов.
- 14. Условия реализации цепной реакции. Стадии цепной неразветвленной реакции. Кинетические закономерности цепной неразветвленной реакции.
- 15. Механизм и кинетика радикальной полимеризации. Передача цепи.
- 16. Специфика протекания радикальных реакций в полимере. Кинетика окисления полимеров. Диффузионный режим окисления полимеров. Окислительная деструкция полимеров.
- 17. Теория цепной разветвленной реакции. Горение водорода.
- 18. Ингибирование цепной разветвленной реакции.
- 19. Примеры реакций с энергетическим разветвлением цепей. Реакция водорода со фтором.
- 20. Первичные молекулярные продукты окисления. Доказательства цепного механизма реакций окисления. Цепная схема окисления углеводородов.
- 21. Зависимость скорости окисления от концентрации кислорода. Установление стационарной концентрации радикалов в процессе окисления.

- 22. Типы реакторов для проведения жидкофазного окисления. Кинетический и диффузионный режимы окисления. Газометрические и хемилюминесцентные методы изучения реакций окисления.
- 23. Методы исследования кинетики накопления продуктов окисления. Кинетические методы изучения макроскопического механизма реакций окисления.
- 24. Методы измерения скоростей образования свободных радикалов и изучения элементарных реакций пероксидных радикалов при жидкофазном окислении.
- 25. Методы идентификации радикалов, образующихся в жидкофазном окислении.
- 26. Зарождение цепей в окисляющихся углеводородах. Вырожденное разветвление цепей в окисляющихся углеводородах. Взаимодействие алкильных радикалов с кислородом.
- 27. Взаимодействие пероксидных радикалов с субстратом окисления. Обрыв цепей в жидкофазном окислении.
- 28. Применение метода стационарных концентраций к процессу окисления органических соединений. Кинетические закономерности неразветвленной цепной реакции жидкофазного окисления.
- 29. Накопление гидропероксидов при окислении органических соединений. Вырожденное разветвление цепей на промежуточном продукте окисления.
- 30. Модели вырождено-разветвленной реакции с одним и несколькими промежуточными продуктами.
- 31. Распад гидропероксидов и образование вторичных продуктов реакции. Последовательные превращения промежуточных продуктов окисления.
- 32. Роль вырожденных разветвлений в сопряженном окислении. Различная активность свободных радикалов в сопряженном окислении. Роль реакций перекрестного обрыва цепей в сопряженном окислении.
- 33. Факторы, определяющие реакционную способность радикалов и молекул в элементарных реакциях окисления. Реакционная способность пероксидных радикалов в реакциях радикального отрыва.
- 34. Реакционная способность пероксидных радикалов в реакциях радикального присоединения. Реакционная способность двойной связи в реакциях радиального присоединения.
- 35. Полярный эффект в реакциях радикального присоединения. Эффект мультидипольного взаимодействия в реакциях окисления винильных соединений.
- 36. Принципы, лежащие в основе ингибирования цепных реакций. Кинетические характеристики ингибиторов цепных реакций.
- 37. Ингибирование газофазных неразветвленно-цепных процессов. Ингибирование процесса хлорирования водорода.
- 38. Ингибирование процесса хлорирования органических соединений и оксида углерода. Ингибирование реакций распада.
- 39. Кинетика ингибированной полимеризации. Ингибиторы радикальной полимеризации. Самоингибирование радикальной полимеризации. Ингибирование полимеризации на глубоких стадиях.
- 40. Кинетическая классификация ингибиторов окисления. Емкость, сила и эффективность ингибиторов окисления.
- 41. Базовые механизмы ингибированного окисления углеводородов.
- 42. Влияние среды на активность ингибиторов.
- 43. Фенолы как ингибиторы окисления. Прочность О-Н-связей фенолов. Реакции фенолов с перекисными радикалами.
- 44. Побочные реакции фенолов. Реакции феноксильных радикалов.
- 45. Ароматические амины как ингибиторы окисления. Энергии диссоциации N—H-связей ароматических аминов. Реакция ароматических аминов с перекисными радикалами.
- 46. Реакции аминильных радикалов.
- 47. Каталитический и многократный обрыв цепей окисления. Восстановительная

активность оксипероксильных радикалов. Многократный обрыв цепей окисления.

Правила выставления оценки на зачете:

Устный ответ студента на зачете оценивается по 2-х балльной системе.

Отметка «зачтено» ставится, если:

- знания отличаются глубиной и содержательностью, дается полный исчерпывающий ответ, как на основные вопросы к зачету, так и на дополнительные;
- студент свободно владеет научной терминологией;
- ответ студента структурирован, содержит анализ существующих теорий, научных школ, направлений и их авторов;
- ответ студента логично и доказательно раскрывает проблему, предложенную для решения;
- ответ студента характеризуется глубиной, полнотой и не содержит фактических ошибок;
- ответ студента иллюстрируется примерами, в том числе из собственной научно-исследовательской деятельности;
- студент демонстрирует умение аргументировано вести диалог и научную дискуссию;
- студент демонстрирует навыки поиска и обработки научной информации и экспериментальных данных.

Отметка «незачтено» ставится, если:

- ответ студента обнаружил незнание или непонимание сущностной части дисциплины;
- содержание вопросов не раскрыто, допускаются существенные фактические ошибки, которые студент не может исправить самостоятельно;
- на большую часть дополнительных вопросов по содержанию зачета студент затрудняется дать ответ или не дает верных ответов;
- студент не демонстрирует навыки поиска и обработки научной информации и экспериментальных данных.

Приложение №2 к рабочей программе дисциплины «Кинетика и механизм гомолитических жидкофазных реакций»

Методические указания для студентов по освоению дисциплины

Основной формой изложения учебного материала по дисциплине «Кинетика и механизм гомолитических жидкофазных реакций» являются лекции с применением презентаций. Это связано с тем, что изучаемый курс содержит большое количество теоретической информации, рисунков и схем. Лекционный курс предоставляется студенту в электронном виде. Вместе с тем необходимо учитывать, что в ходе лекции многие примеры разбираются и иллюстрируются преподавателем на доске. Без конспектирования данных записей невозможно освоить курс в полном объеме.

Полученные на лекциях теоретические знания закрепляются и применяются на практике на практических занятиях. При решении задач происходит закрепление лекционного материала путем применения его к конкретным задачам дисциплины. Основная цель решения задач — помочь усвоить способы обработки результатов эксперимента. В процессе изучения дисциплины рекомендуется регулярное повторение пройденного лекционного материала. Материал, законспектированный на лекциях, необходимо дома еще раз прорабатывать и при необходимости дополнять информацией, полученной на консультациях, практических занятиях или из учебной литературы. Большое внимание должно быть уделено выполнению домашней работы. В качестве заданий для самостоятельной работы дома студентам предлагаются вопросы, аналогичные разобранным на лекциях или немного более сложные, которые являются результатом объединения нескольких базовых задач. Освоить вопросы, излагаемые в процессе изучения дисциплины самостоятельно студенту крайне сложно, поэтому посещение всех аудиторных занятий является совершенно необходимым.

Для проверки и контроля усвоения теоретического материала и приобретенных практических навыков в течение обучения проводятся мероприятия текущей аттестации в виде контрольной работы. Проводятся консультации (при необходимости) по разбору заданий для самостоятельной работы, которые вызвали затруднения. В конце семестра студенты сдают зачет, который выставляется по результатам устного собеседования со студентом при условии успешного прохождения всех мероприятий текущей аттестации.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

В качестве учебно-методического обеспечения рекомендуется использовать литературу, указанную в разделе 8 данной рабочей программы.

Также в процессе изучения дисциплины рекомендуется использовать широкий спектр интернет-ресурсов:

- 1. Денисов Е.Т. Радикальные реакции в химии, технологии и живом организме: лекции (http://lion.icp.ac.ru/e-learn/denisov/).
- 2. Учебные материалы по физической химии электронной библиотеки химического факультета МГУ (http://www.chem.msu.ru/rus/teaching/phys.html). Данный сайт содержит учебные пособия и методические указания, из которых наиболее полезными в рамках данного курса являются:

Еремин В.В., Каргов С.И., Кузьменко Н.Е. Задачи по физической химии. Часть II.

Химическая кинетика. Электрохимия

(http://www.chem.msu.ru/rus/teaching/eremin/welcome.html)

Кубасов А.А. Химическая кинетика и катализ

(http://www.chem.msu.ru/rus/teaching/kubasov/welcome.html)

3. Сайты издательств научных журналов и базы данных:

eLibrary.ru — Электронная научная библиотека (http://elibrary.ru/)

Портал издательства RSC Publishing (http://pubs.rsc.org/)

Портал издательства ACS Publications (http://pubs.acs.org/)

Портал Wiley Online Library (http://onlinelibrary.wiley.com/)

Портал Sciencedirect (http://www.sciencedirect.com/)

Портал издательства Annual Reviews (http://www.annualreviews.org/)

Портал SpringerLink (http://springerlink.com/chemistry-and-materials-science/journals/)

Портал издательства Taylor & Francis Group (http://www.informaworld.com/)

Портал издательства Science (http://www.sciencemag.org/journals/)

Портал издательства Nature (http://www.nature.com/nature/index.html)

База данных ВИНИТИ РАН

(http://www2.viniti.ru/index.php?option=com_content&task=view&id=23&Itemid=100)

База данных NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/)

База данных ChemSpider (http://chemspider.com)

4. Информационная система "Единое окно доступа к образовательным ресурсам" (http://window.edu.ru/library).

Целью создания информационной системы "Единое окно доступа к образовательным ресурсам" (ИС "Единое окно ") является обеспечение свободного доступа к интегральному каталогу образовательных интернет-ресурсов и к электронной библиотеке учебно-методических материалов для общего и профессионального образования.

Полезными для самостоятельной работы являются следующие издания, представленные в библиотеке этого сайта:

1. Преображенский С.А. Определение кинетических параметров радикальной полимеризации: Учебно-методическое пособие. — Воронеж: Изд-во ВГУ, 2005. — 31 с. http://window.edu.ru/resource/089/27089

(Пособие, посвященное определению кинетических параметров радикальной полимеризации, подготовлено на кафедре высокомолекулярных соединений и коллоидов химического факультета Воронежского государственного университета. Рекомендовано для студентов химического факультета, изучающих курс "Высокомолекулярные работу соединения", студентов, выполняющих дипломную кафедре высокомолекулярных соединений и коллоидов.)

2. Теория горения и взрыва: методические указания к выполнению лабораторных работ / сост.: А.Н. Лопанов, Ю.В. Хомченко. – Белгород: Изд-во БГТУ им. В.Г. Шухова, 2010. – 46 с. http://window.edu.ru/resource/431/77431

(Представлены указания к выполнению лабораторных работ по дисциплине "Теория горения и взрыва". В издании рассмотрены методы расчета и моделирования основных процессов горения и взрыва. Методические указания предназначены для студентов специальности 280102 — "Безопасность технологических процессов и производств" заочной формы обучения.)

Для самостоятельного подбора литературы в библиотеке ЯрГУ рекомендуется использовать:

1. Личный кабинет (http://lib.uniyar.ac.ru/opac/bk_login.php) дает возможность получения on-line доступа к списку выданной в автоматизированном режиме литературы, просмотра и копирования электронных версий изданий сотрудников университета (учеб. и метод. пособия, тексты лекций и т.д.) Для работы в «Личном кабинете» необходимо зайти на сайт Научной библиотеки ЯрГУ с любой точки, имеющей доступ в Internet, в пункт меню «Электронный каталог»; пройти процедуру авторизации, выбрав вкладку «Авторизация», и заполнить представленные поля информации.

2. Электронная библиотека учебных материалов ЯрГУ

(<u>http://www.lib.uniyar.ac.ru/opac/bk cat find.php</u>) содержит более 2500 полных текстов учебных и учебно-методических материалов по основным изучаемым дисциплинам, изданных в университете. Доступ в сети университета, либо по логину/паролю.

3. Электронная картотека «Книгообеспеченность»

(http://www.lib.uniyar.ac.ru/opac/bk bookreq find.php) раскрывает учебный фонд научной библиотеки ЯрГУ, предоставляет оперативную информацию о состоянии книгообеспеченности дисциплин основной и дополнительной литературой, а также цикла дисциплин и специальностей. Электронная картотека «Книгообеспеченность» доступна в сети университета и через Личный кабинет.